Novo cultivar de tomate: SCS375 Kaiçara

Euclides Schallenberger¹, Rafael Ricardo Cantu¹, Rafael Gustavo Ferreira Morales¹, José Angelo Rebelo², Alexandre Visconti¹ e Marcelo Mendes de Haro¹

Resumo – O tomate é uma das hortaliças mais produzidas e consumidas no Brasil e no mundo. O Brasil é o oitavo produtor mundial e Santa Catarina, o sétimo produtor nacional, o que torna a cultura uma atividade de grande importância econômica e social. Nas últimas décadas, a produção de tomates está passando por transformações. As sementes de cultivares de polinização aberta estão sendo substituídas por sementes híbridas, o que inviabiliza a retirada das próprias sementes pelos produtores, tornando-os dependentes de compra externa. A legislação nacional para produção em sistema orgânico orienta que as sementes utilizadas no processo de produção sejam oriundas de sistemas orgânicos de produção e de cultivares de polinização aberta. Para atender essa demanda, pesquisadores do Programa de Pesquisa em Hortaliças da Epagri iniciaram no ano de 2003 a avaliação de 57 acessos de tomate de polinização aberta, obtidos de produtores de tomate, fazendo avaliações de produtividade, incidência de pragas e doenças e de qualidade dos frutos. Concluído o processo, foi selecionado o cultivar SCS375 Kaiçara, que apresenta as características desejáveis pelo mercado.

Termos para indexação: Solanum lycopersicum, cultivar, produção de sementes, solanaceae, polinização aberta.

New tomato cultivar: SCS375 Kaiçara

Abstract – Tomato is one of the most produced and consumed vegetables in Brazil and in the world. Brazil is the eighth largest producer in the world and Santa Catarina is the seventh national producer, making the culture an activity of great economic and social importance. In the last decades, the production of tomatoes is going through transformations. The seeds of open pollinated cultivars are being replaced by hybrid seeds, which makes it impossible for producers to obtain their own seeds, making them dependent on external purchase. The national legislation for organic production guides the seeds used in the production process to come from organic production systems and from open pollinated cultivars. To meet this demand, researchers from the Epagri Vegetable Research Program began evaluating 57 open-pollinated tomato accessions obtained from tomato producers in 2003, evaluating productivity, pest and disease incidence, and fruit quality. After completing the process, the cultivar SCS375 Kaiçara was selected, presenting the desirable characteristics of the market.

Index terms: Solanum lycopersicum, cultivar, seed production, solanaceae, open pollination.

Introdução

O tomateiro Solanum lycopersicum pertence à família botânica das solanáceas. É originário da região andina, do norte do Chile até o Peru. O tomateiro foi introduzido no México no século XV, em Puebla e Vera Cruz, de onde, depois de domesticado, foi difundido pelos portugueses e espanhóis pelo mundo. Trazido para o Brasil durante a colonização do País, teve a expansão do cultivo com o fluxo dos imigrantes para o sul e sudeste. A partir de 1970 o cultivo de tomateiro já era comum em todo o Brasil (MAKISHIMA, 2003).

A primeira descrição botânica do tomateiro foi feita por Pier Andrea Mattioli, do Jardim Botânico de Pádua (Itália), que a publicou em 1554 (NUEZ, 2001).

A planta do tomateiro é herbácea, podendo ter crescimento determinado e indeterminado (ALVARENGA, 2004). As flores do tomateiro são hipóginas e hermafroditas e em inflorescência agrupada (cacho), com 5-12 flores. Na maioria dos casos há autopolinização, mas pode haver polinização cruzada (5%) quando o estilete se alonga expondo-se, o que ocorre sob condição de alta temperatura (ESPINOZA, 1991).

As sementes do tomate, até 200 por

fruto, têm forma de rim ou de pera. São pilosas, de cor cinza a castanho-clara, com 3-5mm de comprimento e 2-4mm de largura. Em um grama há cerca de 300 sementes. Segundo Espinoza (1991), prorroga-se por mais de quatro anos o poder germinativo e o vigor de sementes de tomate, se forem armazenadas em embalagem hermética com baixo nível de umidade. A semente não está sujeita a período de dormência, podendo germinar logo após sua retirada do interior do fruto.

O tomate é atualmente uma das hortaliças mais produzidas e consumidas no Brasil e no mundo, sendo cultivado em

Recebido em 13/3/2017. Aceito para publicação em 18/8/2017.

¹ Engenheiro-agrônomo, Dr., Epagri / Estação Experimental de Itajaí, C.P. 277, 88318-112 Itajaí, e-mails: schallenberger@epagri.sc.gov.br, rrcantu@epagri.sc.gov.br, rafaelmorales@epagri.sc.gov.br, visconti@epagri.sc.gov.br, marceloharo@epagri.sc.gov.br.

² Engenheiro-agrônomo, Dr., pesquisador aposentado, fone: (047) 3366 0201, e-mail: jotangelo@gmail.com.

todas as regiões tropicais e subtropicais. O fruto do tomateiro e seus produtos representam uma das mais importantes fontes de vitamina C, pró-vitamina A (beta-caroteno) e antioxidantes (licopeno e outros carotenoides) na dieta humana (CARVALHO et al., 2014). O Brasil é o oitavo produtor mundial, sendo a China o principal. A produção no Brasil é de 3.519 mil toneladas cultivadas em 55 mil ha. Em Santa Catarina a cultura do tomate é uma atividade de grande importância econômica e social. O Estado é o 7º produtor nacional de tomates, com 171,4 mil toneladas produzidas em 2,8 mil ha (ANATER, 2016).

A produção de tomates está passando por profunda transformação nas últimas décadas. As sementes de cultivares de polinização aberta estão sendo substituídas por sementes híbridas, o que impede a retirada das próprias sementes pelos produtores, tornando-os dependentes de compra externa. Outro aspecto é que poucos cultivares híbridos dominam o mercado, o que representa estreitamento da base genética e deixa o produtor com poucas opções. Além disso, as sementes híbridas são relativamente caras para os pequenos produtores (ANDREUCCETTI et al., 2005).

A legislação nacional para produção de hortaliças em sistema orgânico recomenda que as sementes utilizadas no processo sejam oriundas de sistemas orgânicos de produção e que não sejam utilizadas sementes híbridas nem geneticamente modificadas (BRASIL, 2003).

No processo de seleção de cultivares de tomate, a amplitude de adaptação, o potencial produtivo, a resistência ou tolerância a doenças e pragas e as características organolépticas superiores são os atributos que definem a viabilidade ou não de seu cultivo em escala comercial (MELO et al., 2009). Os problemas fitossanitários constituem o fator limitante principal à expansão da produção de tomate orgânico. Por isso, o uso de cultivares tolerantes ou resistentes pode representar para os produtores real vantagem no manejo de pragas e doenças, bem como viabilidade de adoção do cultivar (BETTIOL et al., 2004).

Considerando que muitos produtores ainda mantêm cultivares crioulos de tomate em suas propriedades, selecionados pelas mais variadas características agronômicas e sensoriais, a equipe de pesquisa em olericultura da Epagri/ Estação Experimental de Itajaí (EEI) iniciou trabalhos de seleção e avaliação de cultivares de tomate, visando disponibilizar cultivares de polinização aberta aos produtores que queiram produzir a própria semente. Todo processo de seleção e avaliação dos cultivares foi realizado em sistema orgânico de produção, atendendo a recomendação da legislação, que orienta que as sementes para produção orgânica sejam oriundas de sistema orgânico de produção.

Concluído o processo de prospecção, seleção e avaliação dos cultivares, a equipe de pesquisas em Olericultura da Epagri/EEI selecionou diversos cultivares (dentre eles o cultivar SCS375 Kaiçara, tido como o melhor), registrando no Registro Nacional de Cultivares (RCN) do Ministério da Agricultura, Pecuária e Abastecimento (MAPA).

Origem, histórico e avaliações

O cultivar SCS375 Kaiçara é resultante de um prolongado trabalho de seleção de materiais de tomate realizado pela Epagri/EEI.

O trabalho de seleção iniciou em 2003 com o objetivo de formar um banco de germoplasma de tomate para as condições do litoral catarinense e Vale do Itajaí, visando ao lançamento e à recomendação de cultivares para cultivo em sistema orgânico.

Os cultivares de tomate são oriundos dos três estados do Sul do Brasil, por meio da prospecção de cultivares de tomate plantados por produtores familiares que cultivavam em sistema orgânico de produção. Este processo teve o aval dos produtores, que concordaram em ceder os materiais para fins de pesquisa.

Estes cultivares passaram a ser avaliados na EEI, cultivados em campo aberto em parcelas de 10 plantas. Nesta avaliação, os melhores acessos quanto à produtividade, qualidade dos frutos e resistência a doenças foliares foram sendo selecionados e continuaram em avaliação anual até o ano de 2007, quando apenas oito acessos foram selecionados como os melhores em produ-

tividade, qualidade comercial dos frutos e resistência a doenças foliares.

A partir do ano de 2008 iniciou na EEI o trabalho de avaliação dos oito melhores acessos de tomate. Em cada acesso houve seleção das melhores plantas. A partir de então, as avaliações dos acessos de tomateiro foram sempre realizadas em abrigo de cultivo tipo pampeano com pé direito de 3m de altura e cumeeira de 4.5m, coberto com polietileno e revestido nas laterais com tela anti-insetos. O delineamento foi o de blocos ao acaso com quatro repeticões e 20 plantas por parcela. No cultivo foram utilizados apenas produtos (composto orgânico e calda bordalesa) permitidos para sistema orgânico de producão, conforme normas oficiais (BRASIL, 2003).

As avaliações foram realizadas pelo sistema de pesquisa participativa, onde produtores de tomate indicaram e avaliaram os parâmetros com objetivo de escolher o melhor acesso. Os parâmetros de avaliação foram produtividade comercial, suscetibilidade a doenças foliares, qualidade comercial dos frutos e vigor das plantas. Concluída a avaliação dos cultivares na EEI (onde se destacou o cultivar SCS375 Kaiçara com estabilidade na produtividade), os melhores acessos foram levados para avaliação em municípios do litoral Centro Norte de Santa Catarina (Massaranduba, Blumenau e Camboriú). Esta etapa foi realizada em propriedades de produtores de tomate, pelo processo de pesquisa participativa, com envolvimento do extensionista municipal da Epagri, lideranças municipais e produtores de tomate do município. As avaliações foram as mesmas realizadas na EEI.

Após a conclusão desta etapa de pesquisa participativa, o cultivar SCS375 Kaiçara (Figura 1) destacou-se nas avaliações agronômicas realizadas, sendo o melhor cultivar dentre os materiais avaliados, inferior apenas ao comercial híbrido, sendo por esse motivo recomendado para registro no Registro Nacional de Cultivares (RNC) do MAPA.

Descrições morfológicas e desempenho agronômico

A planta do cultivar SCS375 Kaiçara

é de crescimento indeterminado, com entrenó médio, ausência de abscisão do pedúnculo, folhas curtas, horizontais e de largura média (Tabela 1), características desejáveis do ponto de vista de facilidade nos tratos culturais e manejo fitossanitário, melhorando também a aeração do cultivo e propiciando condições desfavoráveis para surgimento de doenças foliares (Figura 2).

Em avaliações na EEI, o cultivar SCS375 Kaiçara apresentou estabilidade na produção ao longo dos anos de 2008, 2009, 2012, 2014 e 2015. A produtividade média do cultivar SCS375 Kaiçara foi de 67.772kg/ha. Esta produtividade foi inferior à do híbrido comercial, mas maior que os demais cultivares avaliados, tanto nas avaliações na EEI como nos municípios de Massaranduba, Blumenau e Camboriú (Tabela 2).

Outra importante característica do cultivar SCS375 Kaiçara é a baixa suscetibilidade a doenças foliares. Trata-se de uma característica desejável em qualquer cultivar para todos os sistemas de

cultivo, principalmente para sistemas orgânicos de produção, onde não é permitido o uso de agrotóxicos convencionais.

Os frutos são firmes, de coloração vermelha e formato tipo caqui, apresentando pequena área coberta pelo ombro verde e peso médio de 106 gramas. Quanto à qualidade nutricional, sabe-se que o tomate e seus derivados são ricos em compostos relacionados à saúde alimentar, com destaque para o antioxidante ácido ascórbico e para compostos fenólicos (SOUZA et al., 2008). Nas avaliações químicas dos frutos do SCS375 Kaiçara, a acidez foi de 0,38 (g ácido cítrico 100g⁻¹), fenólicos de 40,4 (GAE mg 100g⁻¹) e 6,22 (mg 100g⁻¹) de Vitamina C. Segundo Borguini & Silva (2005), Monteiro et al. (2008) e Silva et al. (2010), estes valores estão dentro dos padrões ideais para um tomate de mesa (Tabela 3). Por sua composição química de boa qualidade, torna-se competitivo e desejável sob a ótica do consumidor.

Além disso, por ser de polinização aberta, o cultivar SCS375 Kaiçara possibilita ao agricultor a retirada da própria semente. Isto, para o sistema agroecológico e orgânico de produção, é um importante fator, pois reduz os custos de produção e diminui a dependência de insumos externos à propriedade. Outra vantagem é que, com sementes próprias e de polinização aberta, fica mais fácil para os produtores de tomate em sistema orgânico de produção atenderem as normas oficiais de produção orgânica (BRASIL, 2003).

Perspectivas e problemas

O cultivar SCS375 Kaiçara tem grande potencial de cultivo principalmente para os produtores que adotam o sistema orgânico de produção. A agricultura orgânica está crescendo, ganhando cada vez mais reconhecimento social, político e científico em todo o mundo por estar fundamentada na aplicação de insumos locais, o que aumenta o valor agregado e propicia uma cadeia de comercialização

Figura 1. Frutos do cultivar de tomate SCS375 Kaiçara. Epagri / Estação Experimental de Itajaí, 2016

Figura 2. Planta em cultivo do cultivar de tomate SCS375 Kaiçara. Epagri / Estação Experimental de Itajaí, 2016

Tabela 1. Características e descrição morfológica do cultivar SCS375 Kaiçara. Epagri / Estação Experimental de Itajaí, 2016

Característica	Descrição da característica			
Plântula: pigmentação antociânica do hipocótilo	Presente			
2. Planta: hábito de crescimento	Indeterminado			
3. Haste: pigmentação antociânica no terço superior	Ausente ou muito fraca			
4. Haste: comprimento do entrenó	Médio			
5. Folha: posição (no terço médio da planta)	Horizontal			
6. Folha: comprimento	Curta			
7. Folha: largura	Média			
8. Folha: forma	Tipo 1			
9. Folha: divisão do limbo	Bipinada			
10. Folha: intensidade de cor verde	Média			
11. Folhas: presença de bolhas	Fraca			
12. Inflorescência: tipo	Principalmente multípara			
13. Flor: fasciação (primeira flor da inflorescência)	Ausente			
14. Flor: coloração	Amarela			
15. Pedúnculo: abscisão	Ausente			
16. Pedúnculo: comprimento (desde a zona de abscisão até o cálice)	Médio			
17. Fruto: tamanho	Médio			
18. Fruto: razão comprimento/diâmetro	Pequena			
19. Fruto: formato na seção longitudinal	Elíptico			
20. Fruto: costelamento na zona peduncular	Ausente ou muito fraco			
21. Fruto: depressão na zona peduncular	Média			
22. Fruto: tamanho da cicatriz peduncular	Média			
23. Fruto: tamanho da lesão pistilar	Pequena			
24. Fruto: forma da extremidade pistilar	Plana			
25. Fruto: tamanho do miolo em seção transversal (em relação ao diâmetro total)	Médio			
26. Fruto: espessura do pericarpo	Média			
27. Fruto: número predominante de lóculos	Somente dois			
28. Fruto: ombro verde (antes da maturação)	Presente			
29. Fruto: área coberta pelo ombro verde	Pequena			
30. Fruto: intensidade de coloração verde do ombro	Fraca			
31. Fruto: intensidade da coloração verde antes da maturação	Fraca			
32. Fruto: coloração extrema na maturação	Vermelha			
33. Fruto: coloração interna (polpa) na maturação	Vermelha			
34. Fruto: firmeza	Firme			
35. Ciclo até o florescimento: primeira flor	Médio			
36. Ciclo até a maturação	Médio			

mais justa (MELO et al., 2009). O mercado de produtos orgânicos é impulsionado pela demanda de consumidores preocupados com qualidade, saúde, questões ambientais e de preservação (TOLEDO et al., 2011). A menor suscetibilidade da planta a doenças foliares, a boa produtividade e qualidade dos frutos, aliadas à possibilidade de retirar a própria semente, são vantagens que o cultivar SCS375 Kaiçara oferece frente outros materiais disponíveis no mercado.

O 'SCS375 Kaiçara' pode ser cultivado em todo estado de Santa Catarina, porém devem ser respeitadas as épocas de cultivo indicadas para cada região.

Disponibilidade de sementes

O cultivar SCS375 Kaiçara está inscrito no Registro Nacional de Cultivares (RNC), sob a inscrição n. 36085, e disponível na Epagri/ Estação Experimental de Itajaí.

Referências

ALVARENGA, M.A.R. Tomate: Produção em campo, em casa-de-vegetação e em hidroponia. Lavras: UFLA, 2004. 400p.

ANATER, E.U. Tomate. In: EPAGRI/CEPA. Síntese anual da agricultura de Santa Catarina 2015-2016. Florianópolis: Epagri, 2016. p.87-89.

ANDREUCCETTI, C.; FERREIRA, M.D.; GUTIERREZ, A.S.D.; TAVARES, M. Caracterização da comercialização de tomate de mesa na CEAGESP: perfil dos atacadistas. **Horticultura Brasileira**, Brasília, v.23, n.2, p.324-328, abr.-jun, 2005.

BETTIOL, W.; GHINI, R.; GALVÃO, J.A.H.; SILOTO, R.C. Organic and conventional tomato cropping systems. **Scientia Agricola**, Piracicaba, v.61, n.3, p.253-259, maio-jun. 2004.

BORGUINI, R.G.; SILVA, M.V. Características físico-químicas e sensorias do tomate (Lycopersicon esculentum) produzido por cultivo orgânico em comparação ao convencional. **Alim. Nutr.,** Araraquara, v.16, n.4, p.355-361, out./dez. 2005.

Tabela 2. Produtividade comercial (kg/ha) de cultivares de tomate, cultivados nos anos de 2008, 2009, 2012, 2014 e 2015 na EEI e em Blumenau, Camboriú e Massaranduba – Epagri / Estação Experimental de Itajaí, 2016

Cultivares			Itajaí - EEI			Massaran- duba	Blumenau	Camboriú	Média
	2008	2009	2012	2014	2015	2015	2015	2015	
Kaiçara	73.940 bABC	70.395 bCD	78.236 bAB	84.583 bA	73.420 bBC	60.480 abD	62.000 aCD	39.118 bE	67.772 b
Híbrido comercial	95.590 aB	88.640 aB	91.420 aB	93.700 aB	108.600 aA	62.392 abC	65.360 aC	59.423 aC	83.141 a
Miguelinho	28.857 dD	55.678 cB	56.700 cB	55.870 cdB	78.700 bA	46.150 dC	39.808 bC	30.622 bcD	49.048 c
Santa Clara 157	19.128 eD	43.420 deB	43.861 deB	47.370 dB	32.080 dC	67.725 aA	31.045 bcC	23.881 cdCD	38.564 e
Santa Clara 120	65.100 bA	54.450 cB	55.013 cB	56.930 cAB	45.300 cC	43.836 dC	38.931 bCD	29.947 bcD	48.688 c
Klaus	17.240 eD	37.382 eB	37.756 eB	55.049 cdA	20.760 eCD	57.525 bcA	26.728 cC	20.560 dCD	34.125 f
Klaus indeter- minado	35.000 dD	45.200 deC	45.695 deC	82.164 bA	32.340 dDE	55.486 bcB	32.318 bcDE	24.860 cdE	44.133 d
Turquia	37.235 dBC	43.420 deAB	43.852 deAB	28.461 eCD	17.280 eE	49.600 cdA	31.045 cCD	23.881 cdDE	34.347 f
Grécia	55.300 cAB	50.694 cdBC	51.201 cdBC	59.826 cA	44.320 cCD	46.088 dC	36.245 bcDE	27.881 cdE	46.444 cd
	47.488C	54.364B	55.970B	62.661A	50.311C	54.365B	40.387D	31.130E	

^{*}Médias seguidas pela mesma letra minúscula na coluna e maiúscula na linha não diferem estatisticamente entre si pelo teste de Tukey (p≤0,05).

Tabela 3. Principais características agronômicas e químicas do cultivar de tomate SCS375 Kaiçara, nos anos de 2008, 2009, 2012, 2014 e 2015. Epagri / Estação Experimental de Itajaí, 2016

Cultivar SCS 375 Kaiçara						
Produtividade (kg/ha)	67.772,00					
Peso médio do fruto (gramas)	106					
Diâmetro médio do fruto (cm)	6,5					
Suscetibilidade a doenças foliares	Baixa					
Hábito de crescimento	Indeterminado					
Acidez (g ácido cítrico 100g ⁻¹)	0,38					
Fenólicos (GAE mg 100g ⁻¹)*	40,4					
Vitamina C (mg 100g ⁻¹)	6,22					
*GAE - Equivalente ao ácido gálico						

BRASIL. Lei n. 10.831, de 23 de dezembro de 2003. Diário Oficial da União, 24 dez. 2003. Seção I. Dispõe sobre a agricultura orgânica e outras providências. Disponível em http://www.jusbrasil.com.br/diarios/DOU/2003/12/24/Edicao-extrasecao-1>.

CARVALHO, R.C.P.; TOBAR, L.L.M.; DAIANESE, E.C.; FONSECA, M.E.N.; BOITEUX, L.S. Melhoramento genético do tomateiro para resistência a doenças de etiologia viral: avanços e perspectivas. Revista Anual de Patologia de Plantas (RAPP), Passo Fundo, v.22, p.280-361, 2014.

ESPINOZA, W. Manual de Produção de Tomate Industrial no Vale do São Francisco. Brasília: IICA/CODEVASC, 1991. 301p.

MAKISHIMA, N. Programa Brasileiro de Modernização da Agricultura Normas de Classificação do Tomate. São Paulo: Centro de Qualidade em Horticultura CQH/Ceagesp, 2003. (CQH. Documentos, 26).

MELO, P.C.T.; TAMISO L.G.; AMBROSA-NO, E.J.; SCHAMMASS, E.A.; INOMOTO, M.M.; SASAKI, M.E.M.; ROSSI, F. Desempenho de cultivares de tomateiro em sistema orgânico sob cultivo protegido. **Horticultura Brasileira**, Brasília, v.27, n.4, p.553-559, out.-dez. 2009.

MONTEIRO, C.S.; BALBI, M.E.; MIGUEL, O.G.; PENTEADO, P.T.P.S.; HARACEMIV, S.M.C. Qualidade nutricional e antioxidante do tomate "tipo italiano". **Alim. Nutr.**, Araraquara, v.19, n.1, p.25-31, jan./mar. 2008.

NUEZ, F. **El Cultivo del Tomate**. Madrid: Mundi Prensa, 2001. 793p.

SILVA, M.L.C.; COSTA, R.S.; SANTANA, A.S.; KOBLITZ, M.G.G.B. Compostos fenólicos, carotenóides e atividade antioxidante em produtos vegetais. **Ciências Agrárias**, Londrina, v.31, n.3, p.669-682, jul./set. 2010.

SOUZA, A.S.; BORGES, S.V.; MAGA-LHÃES, N.F.; RICARDO, H.V.; AZEVEDO, A.D. Spraydried tomato powder: reconstitution properties and colour. **Brazilian Archives of Biology and Technology**, Curitiba, v.51, p.807-814, 2008.

TOLEDO, D.S.; COSTA, C.A.; BACCI, L.; FERNANDES, L.A.; SOUZA, M.F. Production and quality of tomato fruits under organic management. **Horticultura Brasileira**, Brasília, v.29, p.253-257, 2011.