Micotoxinas: o perigo oculto das rações

Laura Helena Vega Gonzales Gil e Gustavo Julio Mello Monteiro de Lima

presença de micotoxinas nos alimentos constitui-se num risco à saúde pública e pode proporcionar grandes perdas econômicas na produção animal. As micotoxinas são metabólitos secundários, produzidos por certos fungos em crescimento, podendo contaminar grãos e sementes durante o amadurecimento da planta, na colheita, no armazenamento, no processamento e, até mesmo, no transporte. Os principais fatores que favorecem o desenvolvimento de fungos são a umidade e a temperatura, mas outros fatores podem interferir, como pH, taxa de oxigenação, período de armazenamento, grau de contaminação, condições físicas dos grãos e infecção por insetos (1).

Muitas micotoxinas provocam manifestações toxicológicas agudas e crônicas no homem e nos animais, dependendo da concentração, do tempo de exposição à micotoxina, do sexo, idade e estado nutricional. Além disso, um alimento pode estar contaminado com mais de uma toxina ao mesmo tempo, podendo levar a um efeito sinérgico, aditivo ou antagônico das micotoxinas (2). Os fungos de maior importância econômica e suas

respectivas micotoxinas estão descritos na Tabela 1.

rer em todos os animais, especialmente patos e perus jovens, suínos em crescimento e terminação, fêmeas em gestação e animais lactantes (3).

Seus efeitos tóxicos levam à inibição mitótica, imunode pressão, carcinogênese e defeitos congênitos. O órgão mais afetado é o fígado, o que leva a alterações na absorção de lipídios. O fígado passa a apresentar-se pálido, amarelo, friável, com aspecto gorduroso e pequenas áreas hemorrágicas (1 e 2). A aflatoxina também interfere na absorção de proteínas. vitaminas e minerais devido ao comprometimento de diversos sistemas enzimáticos (4). Os animais ainda apresentam imunodepressão humoral e celular. que resultam em baixa resposta imunológica a vacinações, e aumento da suscetibilidade a doenças infecciosas (5). Os principais sintomas clínicos de aflatoxicose são apresentados na Tabela 2.

Ocratoxinas

A ocratoxina é uma micotoxina nefrotóxica produzida principalmente pelos fungos *A. ochraceus* e *P. viridicatum*. Clinicamente a doença é caracterizada por poliúria, polidipsia, anorexia, diarréia, desidratação e perda de peso (4).

Em suínos, o consumo de 1mg/kg de peso vivo de ocratoxina leva à morte o animal em 5 a 6 dias, e concentrações de 1 ppb na dieta durante três dias causam polidipsia, poliúria, redução no ganho de peso e diminuição da eficiência (3). A Tabela 3, mostra os efeitos da ocrato-xicose.

Citrininas

A citrinina foi isolada inicialmente do *Penicillium citrinum*, mas posteriormente se descobriu que o gênero *Aspergillus* também a produz. É freqüentemente encontrada em alimentos contaminados com ocratoxina (5).

Esta micotoxina é nefrotóxica como a ocratoxina e causa lesões em muitas espécies de animais, especificamente tumores renais em ratos. Animais que consomem alimentos contaminados com citrinina apresentam diarréia, aumento no consumo de água, poliúria, aumento no tama-

Aflatoxinas

As aflatoxinas são as micotoxinas mais estudadas até hoje, sendo a mais importante a aflatoxina B1, por ser mais toxigênica e abundante (2).

As aflatoxinas B1, B2, G1 e G2 são encontradas em grãos, principalmente de oleaginosas, por terem estas alto valor energético. As aflatoxinas M1 e M2 ocorrem no leite e são derivadas da B1 e B2 (1).

A aflatoxicose pode ocor-

Tabela 1 - Principais micotoxinas, fungos que as produzem e alimentos em que mais se desenvolvem			
Micotoxina	Fungo	Alimento	
Aflatoxina (B1, B2, G1, G2, M1, M2) Ocratoxina	Aspergillus flavus Aspergillus parasiticus	Grãos de oleaginosas, milho, trigo, arroz, cevada, aveia centeio, leite, farinha de sangue	
Ocratoxina	Aspergillus ochraceus (alutanus)	Milho, trigo, cevada	
Citrinina Ergotamina Tricotecenos (Desoxinivalenol, T2)	Penicillium veridicatum Penicillium citrinum Claviceps purpurea Fusarium graminearum (Gibberella zeae)	Milho, trigo, cevada, aveia, centeio Centeio, trigo, cevada Milho, trigo, cevada, aveia, centeio	
Zearalenona	Fusarium sporotrichoides Fusarium trincinctum Fusarium graminearum (Giberella zeae)	Milho, trigo	
Fumonisinas (B1, B2, B3, B4, A1, A2)	F. trincinctum F. moliniforme Fusarium moniliforme Fusarium proliferatum Fusarium nygamai	Milho e subprodutos e resíduos de milho	

nho dos rins e nefrose. Há também diminuição no consumo de alimento e imunodepressão (4).

Ergotaminas

Claviceps purpurea é um fungo que invade o ovário de certas flores e produz uma toxina alcalóide denominada ergotamina (5). A intoxicação por ergotamina pode afetar o homem e os animais e se apresentar de várias formas. No entanto, a gangrena e a interferência reprodutiva são as mais comuns (3).

Os sintomas de intoxicação por ergotaminas incluem desequilíbrio, convulsões, paralisia temporária e diminuição da circulação em membros, orelha e cauda. Esta diminuição da circulação sangüínea, às vezes, leva à gangrena e posteriormente perda de extremidades (2 e 5). A Tabela 4 mostra algumas conseqüências.

Tricotecenos

Os tricotecenos são produzidos por diversas espécies fúngicas, constituindo um grupo de micotoxinas que apresentam metabólitos tóxicos quimicamente semelhantes. Os mais estudados são os produzidos por *Fusarium* spp: desoxinivalenol (vomitoxina, DON) e toxina T2. O mecanismo de ação dos tricotecenos é basicamente a inibição da síntese protéica e interferência com a síntese do DNA (2 e 5).

Desoxinivalenol (Don, Vomitoxina)

É uma micotoxina produzida por F. graminearum (ou seu estágio sexual Gibberella zeae), F. trincinctum, F. sporotrichoides. Estes fungos causam grande grau de contaminação no trigo. A vomitoxina é freqüentemente acompanhada por outros tricotecenos e seus efeitos tóxicos são mais intensos do que a ação isolada de cada toxina (4).

Vomitoxina é o nome comum da toxina, sendo o vômito um dos sintomas. O vômito normalmente não ocorre com a ingestão de alimentos com baixas concentrações de toxina, sendo necessários aproximadamente 10 ppm ou mais para que isso ocorra. O suíno inicialmente pode ingerir uma quantia significante de alimento contaminado, mas com a posterior

êmese há uma redução voluntária da ingestão de alimento para evitar o vômito. Dessa forma, o vômito pode ser um sintoma inicial. Concentrações de aproximadamente 20 ppm podem induzir em suínos o vômito 15 minutos após o consumo inicial, cessando imediatamente o consumo do alimento (5). Na Tabela 5, os sinais

Tabela 2 - Principais sintomas de aflatoxicose			
Espécie animal	Principais sintomas e lesões		
Suíno	 A ingestão de níveis < 100 ppb não leva a apresentação de sinais clínicos, mas no abate os animais apresentam resíduos no figado. A ingestão de 200 a 400 ppb resulta em disfunção hepática e imunodepressão. 400 a 800 ppb levam à redução no crescimento, diminuição no consumo de alimento, icterícia, hipoproteinemia e pêlo arrepiado. Níveis de 1.200 a 2.000 ppb induzem a icterícia, hemorragias subcutâ neas, coagulopatia, depressão, anorexia e algumas mortes. Mais de 2.000 ppb resultam em insuficiência hepática, coagulopatia e morte em 3 a 10 dias. O figado apresenta-se friável, com aumento de volume e cor amarelada. Fêmeas que ingerem de 500 a 750 ppb durante a lactação apresentam aflatoxina no leite, comprometendo assim o desenvolvimento dos leitões lactentes. 		
Aves Bovinos	 Apresentam inibição do crescimento. Imunodepressão que resulta em diminuição de resposta a vacinações e suscetibilidade aumentada a Salmonella, Candida, Treponema e Eimeria. Sensibilidade a machucaduras durante a "apanha" e abate (hematomas e hemorragias). Redução na produção de ovos. Resíduos nos ovos quando ingerem níveis de 100 ppb. Aumento do figado, baço e pâncreas. Atrofia da bolsa de Fabrício e timo. Redução no ganho de peso, diminuição na produção de leite. Disfunção hepática, icterícia e coagulopatia. 		

Tabela 3 - Principais sintomas de ocratoxicose			
Espécie animal	Principais sinais clínicos e lesões		
Suínos	 Lesões renais visíveis e redução do ganho de peso com 200 ppb. Níveis de 1.000 ppb induzem a polidipsia, redução de crescimento, azotemia, glicosúria, poliúria e nefrose. 		
Aves	 Diminuição no ganho de peso, imunodepressão. Lesões renais, que resultam em acúmulo de ácido úrico, coagulopatia. Diminuição na produção, tamanho e qualidade dos ovos. 		
Bovinos	 Depressão, redução no ganho de peso, nefrose e enterite com 1mg/kg vivo durante catorze dias. Coagulopatia com níveis de 2mg/kg vivo durante catorze dias. 		

Tabela 4 - Principais sintomas de intoxicação por ergotaminas			
Espécie animal	Alguns sinais clínicos e lesões		
Suínos	 Diminuição de ganho de peso com níveis de 0,1%. Porcas no último semestre de gestação, alimentadas com 0,3% de ergotamina, apresentam leitões de menor peso ao nascimento e agalaxia. Gangrena com níveis de 0,3%. 		
Aves	 Diminuição do consumo de alimento. Redução no consumo de alimento e no ganho de peso. Necrose de bico, crista e dedos. Enterites, empenamento anormal. Hipertensão devida à vasoconstrição periférica. Perda de coordenação e incapacidade de ficar em pé. 		
Bovinos	Gangrena na pele da ponta das orelhas, ponta da cauda e coroa de casco.		
Ovinos	• Ulceração e necrose de língua, mucosa da faringe, abomaso e intestino delgado.		

clínicos.

Toxina T2

Os efeitos tóxicos desta toxina são bastante variados e atingem o sistema nervoso, imunológico e digestivo. Os principais sinais são necrose superficial de contato principalmente na boca e aparelho digestivo, vômito, inapetência, inflamações, diarréias, abortos e sinais neurológicos, que variam de acordo com a espécie animal (3, 4 e 5). A Tabela 6 resume as

informações por espécie animal afetada.

Zearalenona

De todas as micotoxinas produzidas pelos fungos sobre alimentos, a zearalenona é a que mais afeta o sistema reprodutivo, por apresentar atividade estrogênica. A zearalenona é produzida por várias espécies de *Fusarium* que invadem os grãos ainda no campo, antes da colheita do produto (4).

O suíno é a espécie mais sensível à

zearalenona. Embora essa toxina tenha efeito em animais de todas as idades, as fêmeas com três a quatro meses de idade são as mais atingidas. Animais intoxicados apresentam sintomas de estrogenismo. Em casos extremos, podem ocorrer prolapso retal, vaginal e infertilidade. Tem-se ainda observado mortalidade fetal, fetos mumificados, abortos, leitões natimortos, síndrome dos membros abertos em leitões (splay leg) e aumento da taxa de retorno ao cio (1 e 2).

Os machos apresentam feminilização caracterizada por atrofia de testículos, aumento de tamanho das glândulas mamárias, redução da libido e, em alguns casos, aumento do prepúcio (2 e 4).

Concentrações altas de zearalenona não ocasionam nas aves problemas sérios à produção de ovos e carne. No entanto, deve-se dar atenção à presença destes metabólitos altamente estrogênicos nos alimentos (4 e 5). Na Tabela 7, os sinais clínicos para cada espécie animal.

Tabela 5 - Principais sintomas de intoxicação por vomitoxina Espécie animal Principais sinais clínicos Suínos • A ingestão de 1 ppm é suficiente para promover redução no consumo de ração, o qual pode ser de até 50% de decréscimo com a ingestão de 5 a 10 ppm da toxina. • A completa rejeição do alimento ocorre com níveis de 20 ppm aproximada mente. • Não apresenta efeitos negativos com níveis de até 5 ppm. • Baixa conversão alimentar, lesões na cavidade oral e moela são obser vadas com níveis de 5 a 10 ppm durante seis semanas.

	Tabela 6 - Sintomas de intoxicação por toxina T2
Espécie animal	Principais sinais clínicos
Suínos	 Efeito imunodepressor com a ingestão de 5 a 8 ppm. Redução do ganho de peso e redução do tamanho das leitegadas com a ingestão de 8 a 10 ppm. Émese, letargia e rejeição de alimentos com a ingestão de 16 ppm. Hemorragia e perda de peso, lesões necróticas na boca e aparelho digestivo.
Aves	 Lesões e má formação do bico em pintos com níveis de 0,4 a 0,6 ppm durante três semanas. Empenamento anormal, redução na produção de ovos. Redução significante no ganho de peso e na ingestão de alimento com níveis de 2 a 3 ppm. Comprometimento do sistema nervoso, má formação dos ossos, mortalidade.
Bovinos	• Lesões necróticas na boca e aparelho digestivo, enterite e úlceras.

Bovinos	 Lesoes necroticas na boca e aparelho digestivo, enterite e ulceras. Fezes sanguinolentas, enterites, úlceras no abomaso e rúmem, coagulopatias. 	
Tabela 7 - Principais sintomas de intoxicação por zearalenona		
Espécie animal	Espécie animal Principais sinais clínicos e lesões	
Suínos	• 1 a 3 ppm em marrãs causam efeitos estrogênicos como vulvovaginite e prolapso. • As fêmeas apresentam manutenção do corpo lúteo, anestro e	
pseudogestação	com níveis de 3 a 10 ppm. • Quando fêmeas ingerem cerca de 30 ppm uma a três semanas após a cobertura ocorre morte embrionária. • Machos com 14 a 18 semanas de idade podem apresentar diminuição dos	
Aves	níveis de testosterona no sangue, diminuindo consequentemente a libido. • Em reprodutoras em fase de recria foram observados aumentos no ganho de peso, tamanho do ovário e peso da crista com níveis de 300 ppm.	

 Poedeiras consumindo 25 a 100 ppm durante catorze dias apresentam melhor produção de ovos do que as controle (sem zearalenona).

• Necessitam em média duas a quatro coberturas, quando o normal é uma

· Aumento da incidência de cisto de ovário.

a duas coberturas para se obter a fertilização.

• Baixa taxa de fertilização.

Fumonisinas

Os animais mais sensíveis à fumonisina são os eqüinos, suínos e ratos. Os efeitos clínicos variam com a espécie e dosagem. No entanto, a hepatotoxicose é um fator comum em todas elas (2).

As fumonisinas constituem um grupo de seis micotoxinas, produzidas por várias espécies de fungo (Tabela 1), sendo que a mais conhecida e importante é a fumonisina B1.

As fumonisinas são comumente encontradas em grãos de milho e seus subprodutos e resíduos. Elas apresentam grande risco para as pessoas e animais por serem carcinogênicas e termoestáveis (3).

A fumonisina B1 é responsável pela leucoencefalomácia eqüina, síndrome do edema pulmonar em suínos e tumores de fígado em ratos (2 e 3).

A leucoencefalomalácia se manifesta clinicamente por tremores musculares, fraqueza, incoordenação, andar em círculos, incapacidade de deglutir, acentuada depressão e perda da consciência. A icterícia pode ocorrer em alguns casos. A morte se verifica 48 a 72 horas após o início dos sintomas. À necropsia, aparecem áreas de liquefação da substância branca do cérebro (1 e 4).

Bovinos

Em suínos, a síndrome do edema pulmonar pode atingir animais de qualquer idade. Os sintomas agudos incluem respiração difícil, cianose e enfraquecimento, e a morte geralmente ocorre dois a três dias após o início dos sintomas. Macroscopicamente, os animais apresentam cianose, hidrotórax e extenso edema pulmonar (3). Mais detalhes na Tabela 8, a seguir.

Interação entre as micotoxinas

À medida que as condições para o crescimento fúngico são favoráveis, aumenta a probabilidade de se ter mais de uma toxina em um mesmo alimento, que podem ser produzidas ou não por um fungo diferente. O *Fusarium* tem, por exemplo, potencial para produzir mais de uma toxina (1 e 2).

Portanto, a interação entre micotoxinas é uma preocupação a mais na manutenção da qualidade dos grãos. Um agravamento nesse problema é a dificuldade de diagnóstico. As interações entre micotoxinas podem levar a efeitos sinérgicos da ação micotóxica sobre os animais, como é o caso de interações entre aflatoxina e toxina T2, aflatoxina e vomitoxina, ou ainda toxina T2 e desoxinivalenol (6).

Detecção de fungos e micotoxinas

A presença da micotoxina no alimento não está diretamente associada à presen-

ça dos fungos, pois pode haver presença de fungos sem que haja produção de toxinas e estas podem permanecer no alimento mesmo após o desaparecimento do fungo (1).

Alimentos contaminados por fungos podem ser avaliados através do exame visual dos grãos, ou ainda através do uso de raio ultravioleta (black light). Este último método é válido somente para grãos contaminados com fungos do gênero Aspergillus. Esses métodos são muito utilizados em locais de compra e recebimento de grãos devido à sua

rapidez. Contudo, é impreciso e não é quantitativo (5).

Para o diagnóstico de micotoxinas, os métodos mais utilizados são: ELISA (ensaio imunoenzimático), cromatografia de camada delgada (TLC) e cromatografia líquida de alto desempenho (HPLC). O ELISA é muito utilizado, pois é de fácil manejo, rápido e seu custo não é alto. Já o teste de cromatografia é uma técnica sofisticada e requer equipamentos caros o que dificulta a sua utilização.

O HPLC vem sendo usado como método padrão para a confirmação das análises realizadas por TLC e ELISA. É importante salientar que a maior dificuldade na determinação das micotoxinas de um lote de alimento ou ração está na amostragem. Isto porque o lote é normalmente grande e a contaminação não é ho-mogênea. Portanto, os resultados dependem de uma boa amostragem (1 e 2).

Prevenção e controle de fungos e micotoxinas

Sem dúvida, o melhor método para

controlar a contaminação por micotoxinas em alimentos é prevenindo o desenvolvimento de fungos. A contaminação de grãos por fungos é um problema sério e de difícil controle, ocorrendo em condições inadequadas de armazenagem, colheita ou durante o período de pré-colheita e transporte (2).

Os fungos são classificados em três grupos: fungos de campo, fungos intermediários e fungos de armazenamento; estes diferem conforme as condições que favorecem o seu crescimento (Tabela 9).

É importante saber que alguns fungos são capazes de produzir pequenas quantidades de micotoxinas, quando expostos a temperaturas e umidades menores ou maiores que as descritas na Tabela 9.

Para prevenir as infestações de fungo no campo devem ser tomadas as seguintes medidas: fazer controle de insetos e fungos, plantar em espaçamento recomendado, manter a cultura limpa de ervas daninhas, fazer rotação de culturas, destruir e enterrar restos de culturas, se possível irrigar a cultura para evitar o estresse da seca, plantar e principalmente colher

Tabela 8 - Principais sintomas de intoxicação por fumonisinas			
Espécie animal	al Principais sinais clínicos e lesões		
Suínos	• Edema pulmonar agudo, hepatose e diminuição do consumo de alimento e imunodepressão.		
Eqüinos	• Apatia, desordens nervosas, paralisia do lábio inferior, cegueira, depres são, superexcitação e cabeça baixa.		
Aves	 Inibição do crescimento, diminuição do consumo de alimento. Diarréia, fraqueza das pernas. Lesões orais, alta mortalidade. 		
Bovinos	• Diminuição da função hepática e imunodepressão.		

Grupo	Fungo	Temperatura	Umidade relativa do ar	
Fungos de campo invadem grãos e sementes durante os estágios finais de amadurecimento da planta, o dano é causado antes da colheita.	Alternaria Cladosporium Fusarium Helminthosporium Claviceps	Variável	90%	Variável, ocorrem geralmente em épocas de alta umidade.
antes da colheita. Fungos intermediários invadem as sementes e grãos antes da colheita e continuam a crescer e causar danos durante o armazenamento.	Penicillium Fusarium	Oscilações de temperaturas al- tas (20 a 25°C) com tempe- raturas baixas (8 a 10°C)	85 a 90%	22 a 23%
Fungos de armazenamen desenvolvem-se e causam danos somente em condições favoráveis de armazenamento.	to Arpergillus	27 a 30°C	85%	17,5 a 18,5% para grãos de milho, trigo, arroz e sorgo 8 a 9% para sementes de amendoim, girassol e algodã

O armazenamento de grãos em condições desfavoráveis propicia o desenvolvimento fúngico (mofo) e a produção de micotoxinas. À direita grãos de trigo comprometidos e à esquerda grãos sadios

em época adequada e evitar danos mecânicos à cultura (1).

Na prevenção de contaminação por fungos durante a colheita e transporte, as principais medidas a serem tomadas são: colher no ponto ótimo de maturação, evitar danos mecânicos durante a colheita, não deixar o produto exposto à noite no campo, procurar não colher em dias chuvosos, proteger contra a chuva durante o transporte, secar o produto imediatamente após a colheita, escolhendo a melhor técnica para cada produto, e não ensacar ou armazenar antes que o produto esteja devidamente seco (1).

Durante a estocagem deve-se armazenar os grãos em locais secos e que não permitam a entrada de água, limpos, fazer controle de insetos e roedores, monitorar a umidade e a temperatura periodicamente. Para evitar o crescimento fúngico no armazenamento diversas substâncias têm sido utilizadas. Os antifún-gicos mais usados são ácidos or-

À direita grãos de milho atacados e estragados por fungo, comumente chamados de "milho ardido". À esquerda grãos de milho sadios.

gânicos como propiônico, acético, sórbico e benzóico (2).

A utilização de ácidos orgânicos é recomendada para armazenamento por mais de 20 dias e para grãos com umidade superior a 14%. Estes ácidos não produzem efeito algum sobre as micotoxinas já presentes nos grãos (2 e 3).

Utilização de alimentos contaminados com micotoxinas

Quando medidas preventivas não foram realizadas, ou não foram efetivas, deve-se optar por métodos de detoxificação dos alimentos. O ide-

al seria a eliminação do alimento contaminado, após a constatação da presença de micotoxina. No mundo todo tem-se realizado grandes esforços na procura de métodos e procedimentos para minimizar os efeitos das micotoxinas sobre a saúde e produtividade dos animais e diminuição das perdas econômicas (2).

- Descontaminação: A descontaminação pode ser feita através de remoção física (grãos ardidos), destruição através do calor, desativação biológica (certos fungos e levedos reduzem a aflatoxina) e tratamento químico com ozônio, peróxido de hidrogênio, hipoclorito de sódio, formaldeído, hidróxido de cálcio e amônia, em casos de contaminações por afla-toxina. Todos estes métodos são extremamente caros e, portanto, inviáveis (1).
- Diluição de partidas contaminadas: A diluição de grãos contaminados, com grãos não contaminados pode ser uma solução quando os níveis de micotoxinas não são altos. Nestes casos, recomenda-se

formular dieta com altos níveis de proteína e vitaminas. Rações suplementares com metio-nina e lisina atenuaram os efeitos da aflatoxina sobre suínos e aves (3).

• Uso de adsorventes: Recentemente vêm sendo utilizadas matérias inertes na dieta para reduzir a absorção de aflatoxinas pelo trato gastrointestinal. O uso do carvão inativado obteve valores pouco expressivos, mas os aluminossilicatos de sódio (zeolita sódica), aluminossilicatos de cálcio e as bentonitas, adicionados à ração, mostraram resultados satisfatórios em aves, suínos, bovinos e ovinos (2).

Estes adsorventes estão sendo usados quando a presença de aflatoxinas for detectada através de amostragens (> 15% das amostras analisadas) e análises (> 50 ppb), adicionando às rações elaboradas com estes grãos 0,5% de aluminons-silicatos ou bentonita (1).

Conclusão

A saúde humana e a produção animal têm sido muito prejudicada com a ingestão de alimentos contaminados com micotoxinas. Por isso é necessário dar maior atenção aos efeitos nocivos causados pelas micotoxinas, buscando melhores conhecimentos sobre seus efeitos, estabelecendo níveis máximos de micotoxinas nos alimentos e identificando métodos de descontaminação de alimentos eficientes e de custo acessível.

Deve-se ainda conscientizar a população que o melhor método para evitar a contaminação é evitar o desenvolvimento de fungos nos alimentos, através de métodos preventivos durante a colheita, transporte e armazenamento.

Literatura citada

- LÁZZARI, F.A. Umidade, fungos e micotoxinas na qualidade de sementes, grãos e rações. Curitiba: Ed. do Autor, 1993. 133p.
- 2. DIEKMAN, M.A.; COFFEY, M.T. Micotoxins and swine performance. West Lafayette, Indiana: Purdue University/Cooperative Extension Service, s.d. n.p. (PHI, 129).
- 3. LEMAN, A.D.; STRAW, B.E.; MENGELING, W.L.; D'ALLAIRE, F.; TAYLOR, D.J. Diseases of swine. 7.ed. Ames, Iowa: Iowa State University Press, 1992. p.735-743.
- BIBERSTEIN, E.L.; ZEE, Y.C. Tratado de microbiologia veterinária. Zaragoza: Editorial Acribia, 1990. p.397-404.
- 5. COLNEK, B.W.; BARNES, J.H.; BEARD, C.W.; REID, W.M. *Diseases of poultry*. 5.ed. Ames Iowa: Iowa State University Press, 1991. p.884-915.
- PERFUMO, C.J. Aflatoxicoses en las espécies mamíferas. La Plata, Argentina: Univ. de La Plata, 1994. 16p. (Cursillo sobre Micotoxinas y Salud Animal).

Laura Helena Vega Gonzales Gil, méd. vet., bolsista do CNPq, CRMV 8.750, Centro Nacional de Pesquisa de Suínos e Aves - CNPSA/EMBRAPA, C.P. 21 - 89700-000, Concórdia, SC e Gustavo Julio Mello Monteiro de Lima, eng. agr., Ph.D., bolsista do CNPq, Cart. Prof. n° 137.500, CREA-SC, Centro Nacional de Pesquisa de Suínos e Aves - CNPSA/EMBRAPA, C.P. 21 - 89700-000. Concórdia. SC.