Avanços na observação e no conhecimento do solo via o sensoriamento próximo

Autores

DOI:

https://doi.org/10.52945/rac.v34i1.1048

Palavras-chave:

pedometria, sistemas de informações em solos, mapeamento digital do solo

Resumo

A agricultura emprega técnicas cada vez mais inovadoras na busca por otimizar insumos, maximizar a lucratividade e diminuir o impacto ambiental. Exemplo disso é o despontar da agricultura 4.0, na qual sensores coletem informações através do Sensoriamento Proximal do Solo. Esses métodos, chamados photon-based methods, empregam distintos comprimentos de onda da radiação eletromagnética para mensurar atributos e propriedades do solo in-situ ou ex-situ. Instituições nacionais de pesquisa têm produzido conhecimento relevante e contribuído para a formação de profissionais aptos a aplicar essas novas abordagens em ciência do solo. Nesse contexto, esta revisão bibliográfica teve como objetivo verter as principais técnicas de sensoriamento proximal em uma síntese acessível para estudantes, técnicos e pesquisadores.

Métricas

Carregando Métricas ...

Publication Facts

Metric
This article
Other articles
Peer reviewers 
3
2.4

Reviewer profiles  Indisp.

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
Indisp.
11%
Metric
This journal
Other journals
Articles accepted 
34%
33%
Days to publication 
247
145

Indexed in

Editor & editorial board
profiles
Publisher 
Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina - Epagri

Biografia do Autor

Alexandre ten Caten, Universidade Federal de Santa Catarina (UFSC)

Departamento de Agricultura, Biodiversidade e Florestas, Ciência do Solo

Ricardo Simão Diniz Dalmolin, Universidade Federal de Santa Maria (UFSM), Departamento de Solos

Departamento de Solos, Ciência do Solo

Elisângela Benedet da Silva, Epagri/Ciram

Ciram, Geoprocessamento e Ordenamento Ambiental

Taciara Taciara Zborowski Horst Heinen

Departamento de Solos, Ciência do Solo

José Lucas Safanelli, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ)

Departamento de Solos, Ciência do Solo

Referências

BAVEYE, P.C; LABA, M. Moving away from the geostatistical lamppost: Why, where, and how does the spatial heterogeneity of soils matter? Ecological Modelling, v.298, p. 24-38, 2015.

BOWERS, S.A.; HANKS, R.J. Reflection of radiant energy from soils. Soil Science, v.100, p130-138, 1965.

CANTARELLA, H.; QUAGGIO, J.A.; VAN RAIJ, B.; ABREU, M.F. Variability of soil analysis in commercial laboratories: implications for lime and fertilizer recommendations. Communications in Soil Science and Plant Analysis, v.37, p.2213–2225, 2006.

CLARCK, R.N. Spectroscopy of rocks and minerals, and principles of spectroscopy. In: RENCZ, A. (Ed.). Remote sensing for the earth sciences: manual of remote sensing. 3. ed. New York. 1999. p.3-52.

COUTINHO, F.S.; PEREIRA, M.G.; TOSTES, J.D.O.; FRANCELINO, M.R.; GAIA-GOMES, J.H. . Application of Georadar in Areas with Different Vegetation Cover. FLORAM, v. 24, p. e20160011, 2017.

DALMOLIN, R.S.D.; GONCALVES, C.N.; KLAMT, E.; DICK, D.P. Relação entre os constituintes do solo e seu comportamento espectral. Ciência Rural, v.35, p.481-489, 2005.

DANIELS, D.J.; GUNTON, D.J.; SCOTT, H.F. Introduction to subsurface radar. IEEE Proceedings, v.135, p.278-320, 1988.

DEMATTÊ, J.A.M. et al. (65 autores) The Brazilian Soil Spectral Library (BSSL): A General View, Application and Challenges. Geoderma, v.354, 113793, 2019. DOI: https://doi.org/10.1016/j.geoderma.2019.05.043.

DOTTO, A.C.; DALMOLIN, R.S.D.; CATEN, A.T.; GRUNWALD, S. A systematic study on the application of scatter-corrective and spectral-derivative preprocessing for multivariate prediction of soil organic carbon by Vis-NIR spectra. Geoderma, v.314, p.262-274, 2018.

FANG, Q.; HONG, H.; ZHAO, L.; KUKOLICH, S.; YIN, K.; WANG, C. Visible and Near-Infrared Reflectance Spectroscopy for Investigating Soil Mineralogy: A Review. Journal of Spectroscopy, p.1-14, 2018. DOI: https://doi.org/10.1155/2018/3168974.

FERREIRA, M.M.C. Quimiometria: conceitos, métodos e aplicações. Campinas, SP: Editora Unicamp, 2015. 496p.

GARDNER, W.H.; KIRKHAM, D. Determination of soil water by neutron scattering. Soil Science, v.73, p.391-401, 1952.

JI, W., ADAMCHUK, V. I., CHEN, S., SU, A. S. M., ISMAIL, A., GAN, Q., SHI, Z.; BISWAS, A. Simultaneous measurement of multiple soil properties through proximal sensor data fusion: A case study. Geoderma, v. 341, p. 111-128, 2019. DOI: https://doi.org/10.1016/j.geoderma.2019.01.006.

KUANG, B.; MAHMOOD, H.S.; QURAISHI, M.Z.; HOOGMOED, W.B.; MOUAZEN, A.M.; VAN HENTEN, E.J. Sensing soil properties in the laboratory, in situ, and on-line: A review. Advances in Agronomy, v.114, p.155–223, 2012.

LEZOCHE, M.; HERNANDEZ, J.E.; DÍAZ, M.D.M.E.A.; PANETTO, H.; KACPRZYK, J. Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture, Computers in Industry, v.117, p.1-15, 2020.

MCNEILL, J.D. Electromagnetic terrain conductivity measurement at low induction numbers. Ontario: Geonics Ltd., 1980. 15p.

MENESES, P.R. Sensoriamento remoto: reflectância dos alvos naturais. Brasilia: Editora Universidade de Brasília; Planaltina: Embrapa Cerrados, 2001. 262 p.

MOLIN, J.P.; TAVARES, T.R. Sensor systems for mapping soil fertility attributes: challenges, advances, and perspectives in brazilian tropical soils. Engenharia Agrícola, v.39, p126-147, 2019 DOI: https://doi.org/10.1590/1809-4430-eng.agric.v39nep126-147/2019.

MOURA-BUENO, J. M.; DALMOLIN, R. S. D.; TEN CATEN, A.; DOTTO, A. C.; DEMATTE, J.A.M. Stratification of a local VIS-NIR-SWIR spectral library by homogeneity criteria yields more accurate soil organic carbon predictions. Geoderma, v. 337, p. 565-581, 2019.

MOURA-BUENO, J. M.; DALMOLIN, R. S. D. ; HORST-HEINEN, T.Z.; TEN CATEN, A.; VASQUES, G.M. ; DOTTO, A.C.; GRUNWALD, S. When does stratification of a subtropical soil spectral library improve predictions of soil organic carbon content? Science of the Total Environment, v. 1, p. 139895, 2020.

ROMERO, D.J.; BEN-DOR, E.; DEMATTÊ, J.A.M.; SOUZA, A.B.; VICENTE, L.E.; TAVARES, T.R.; MARTELLO, M.; STRABELI, T.F.; BARROS, P.P.DA S.; FIORIO, P.R.; GALLO, B.C.; SATO, M.V.; EITELWEIN, M.T. Internal soil standard method for the Brazilian soil spectral library: Performance and proximate analysis. Geoderma, v.312, p.95-103, 2018.

SAHWAN, W.; LUCKE, B.; SPRAFKE, T.; VANSELOW, K.A.; BÄUMLER, R. Relationships between spectral features, iron oxides and colours of surface soils in northern Jordan. European Journal of Soil Science, p.1-18, 2020. DOI: https://doi.org/10.1111/ejss.12986.

SAIZ-RUBIO, V.; ROVIRA-MÁS, F. From smart farming towards Agriculture 5.0: A review on crop data management. Agronomy, v.207, p.1-21, 2020.

SILVA, E.B. Espectroscopia de reflectância para análise textural de amostras de solo legadas do estado de Santa Catarina. 2018. 90f. Tese (Doutorado em Ciência do Solo) – Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 2018.

SILVA, E.B.; GIASSON, E.; DOTTO, A.C.; CATEN, A.T.; DEMATTÊ, J.A.M.; BACIC, I.L.Z.; VEIGA, M.D. A Regional Legacy Soil Dataset for Prediction of Sand and Clay Content with Vis-Nir-Swir, in Southern Brazil. Revista Brasileira de Ciência do Solo, v.43, e0180174, 2019. DOI: https://doi.org/10.1590/18069657rbcs20180174.

SORIANO-DISLA, J.M.; JANIK, L.J.; VISCARRA-ROSSEL, R.A.; MACDONALD, L.M.; MCLAUGHLIN, M.J. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical chemical, and biological properties. Applied Spectroscopy Reviews, v.49, p.139–186, 2014.

STENBERG, B.; VISCARRA-ROSSEL, R.A; MOUAZEN, A.M.; WETTERLIND, J. Visible and near infrared spectroscopy in soil science. In: Sparks, DL (Ed.). Advances in Agronomy, v.107, p.163-215, 2010.

STEVENS, A.; NOCITA, M.; TÓTH, G.; MONTANARELLA, L.; VAN WESEMAEL, B. Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy. PLoS ONE, v.8, n.6, e66409, 2013. DOI: https://doi.org/10.1371/journal.pone.0066409.

STOCKMANN, U., MALONE, B. P., MCBRATNEY, A. B., MINASNY, B. Landscape-scale exploratory radiometric mapping using proximal soil sensing. Geoderma, v. 239, p. 115-129, 2015. DOI: https://doi.org/10.1016/j.geoderma.2014.10.005.

STONER, E.R.; BAUMGARDNER, M.F. Characteristic variations in reflectance of surface soils. Soil Science Society of America Journal, v.45, p.1161-1165, 1981.

VISCARRA-ROSSEL, R.A.; ADAMCHUK, V.I.; SUDDUTH, K.A.; MCKENZIE, N.J.; LOBSEY, C. Proximal soil sensing: an effective approach for soil measurements in space and time. Advances in Agronomy, v.113, p.243-291, 2011.

VISCARRA-ROSSEL, R.A. et al. (39 autores) A global spectral library to characterize the world's soil. Earth-Science Reviews, v.155, p.198-230, 2016.

VISCARRA-ROSSEL, R.A.; MCBRATNEY, A.B.; MINASNY, B. Proximal soil sensing, New York, USA: Springer science, 2010. 446p.

WIJEWARDANE, N. K., HETRICK, S., ACKERSON, J., MORGAN, C. L., GE, Y. VisNIR integrated multi-sensing penetrometer for in situ high-resolution vertical soil sensing. Soil and Tillage Research, v. 199, p. 104604, 2020. DOI: https://doi.org/10.1016/j.still.2020.104604.

Downloads

Arquivos adicionais

Publicado

2021-04-29

Como Citar

ten Caten, A., Diniz Dalmolin, R. S., Benedet da Silva, E., Taciara Zborowski Horst Heinen, T., & Safanelli, J. L. . (2021). Avanços na observação e no conhecimento do solo via o sensoriamento próximo. Agropecuária Catarinense, 34(1), 72–78. https://doi.org/10.52945/rac.v34i1.1048

Edição

Seção

Revisão Bibliográfica

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.