Inoculation of plant growth promoting bacteria for Pinus taeda L. seedlings

Authors

Keywords:

Bacillus, Dickson Quality Index, planting pit, tree nursery, forestry microbiology

Abstract

Brazil cultivate about one million hectares of Pinus taeda and It has one of the most productive forestry sectors in the world. Several factors contributed to the high productivity of Pinus forests in Brazil, such as plant genetic breeding, improved soil fertility and the development of mechanized plantations. However, the forestry production system may be further improved with the utilization of plant growth promoting bacteria (PGPB). This article reviews the most prominent results of PGPB inoculation in P. taeda seedlings in Brazil, with the objective of offering a recommendation for a viable technology to promote growth and produce more vigorous seedlings. Inoculation of PGPB may be realized in seeds, in substrate, by irrigation, and by spraying, either in the seedling tubes or in the field pits. Experiments performed in Brazil showed that application of about 12 x106 CFU of bacterial cells per gram of substrate is suitable to stimulate seedling growth and to increase the seedling indicator called Dickson Quality Index (DQI). Furthermore, inoculation of PGPB may contribute to biological control of plagues and diseases. In conclusion, the review highlighted that inoculation of PGPB in nursery may produce bigger and more vigorous P. taeda seedlings for field transplantation; however, it also revealed that forestry microbiology has a long way to pursue because there is only few options of inoculants available for the silviculture.

Metrics

Metrics Loading ...

Author Biographies

Yanka, Federal University of Parana

Student in the Postgraduate Program in Soil Science, at the Federal University of Paraná.

Glaciela, Federal University of Parana

Teacher of Federal University of Paraná. 

Sonia, Federal University of Santa Catarina

Teacher of Federal University of Santa Catarina. 

References

ALOO, B.N.; MAKUMBA, B.A.; MBEGA, E.R. The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiological Research, Amsterdam, v. 219, p. 26-39, 2019. DOI: https://doi.org/10.1016/j.micres.2018.10.011.

AHEMAD, M.; KIBRET, M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University – Science, Amsterdam, v.26, n.1, p.1-20, 2013. DOI: https://doi.org/10.1016/j.jksus.2013.05.001.

AHMAD, F.; AHMAD, I.; KHAN, M.S. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, Amsterdam, v.163, n. 2, p.173-181, 2008. DOI: https://doi.org/10.1016/j.micres.2006.04.001.

BACKER, R.; ROKEM, J.S.; ILANGUMARAN, G.; LAMONT, J.; PRASLICKOVA, D.; RICCI, E.; SUBRAMANIAN, S.; SMITH, D. Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Frontiers in Plant Science, Lausanne, v. 9, p. 1-17, 2018. DOI: https://doi.org/10.3389/fpls.2018.01473.

BARRIUSO, J.; SOLANO, B.R.; SANTAMARÍA, C.; DAZA, A.; MAÑERO, F.J.G. Effect of inoculation with putative plant growth-promoting rhizobacteria isolated from Pinus spp. on Pinus pinea growth, mycorrhization and rhizosphere microbial communities. Journal of Applied Microbiology, Cambridge, v. 105, p. 1298-1309, 2008. DOI: https://doi.org/10.1111/j.1365-2672.2008.03862.x.

BORDERS, B.E.; BAILEY, R.L. Loblolly Pine—Pushing the Limits of Growth, Southern Journal of Applied Forestry, Oxford, v. 25, n. 2, p. 69-74, 2001. DOI: https://doi.org/10.1093/sjaf/25.2.69.

BRAZIL. Ministry of Agriculture, Livestock and Food Supply. Brazilian Forests at glance. Brasília: MAPA/SFB, 2019. Available in: https://www.florestal.gov.br/documentos/publicacoes/4262-brazilian-forests-at-a-glance-2019/file. Accessed on: 23 July 2021.

BRUNETTA, J.M.F.C.; ALFENAS, A.C.; MAFIA, R.G.; GOMES, J.M.; BINOTI, D.B.; FONSECA, N.A.N. Isolamento e seleção de rizobactérias promotoras do crescimento de Pinus taeda. Revista Árvore, Viçosa, v. 34, n. 3, p. 399-406, 2010. DOI: https://doi.org/10.1590/S0100-67622010000300003.

CARDOSO, E.J.B.N.; VASCONCELLOS, R.L.F. de; RIBEIRO, C.M.; MIYAUCHI, M.Y.H. PGPR in Coniferous Trees. In: MAHESHWARI, D. K. (Ed.). Bacteria in Agrobiology: Crop Ecosystems. Berlin: Springer, 2011. p.345-359. DOI: https://doi.org/10.1007/978-3-642-18357-7_12.

DICKSON, A.; LEAF, A.L.; HOSNER, J.F. Quality appraisal of white spruce pine seedling stock in nurseries. The Forestry Chronicle, Ottawa, v. 36, n. 1, p. 10-13, 1960. DOI: https://doi.org/10.5558/tfc36010-1.

ENEBAK, S.A. Rhizobacteria isolated from Loblolly pine seedlings mediate growth-promotion of greenhouse-grown Loblolly, Slash, and Longleaf pine seedlings. Forest Science, Oxford, v. 51, n. 6, p. 541-545, 2005. DOI: https://doi.org/10.1093/forestscience/51.6.541.

ENEBAK, S.A.; WEI, G.; KLOEPPER, J.W. Effects of Plant Growth-Promoting Rhizobacteria on Loblolly and Slash Pine Seedlings. Forest Science, Oxford, v. 44, n. 1, 1998. DOI: https://doi.org/10.1093/forestscience/44.1.139.

ETESAMI, H.; MAHESHWARI, D.K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety, Amsterdam, v. 156, p. 225-246, 2018. DOI: https://doi.org/10.1016/j.ecoenv.2018.03.013.

FATIMA, F.; AHMAD, M.M.; VERMA, S.R.; PATHAK, N. Relevance of phosphate solubilizing microbes in sustainable crop production: a review. International Journal of Environmental Science and Technology, Basingtoke, p. 1-14, 2021. DOI: https://doi.org/10.1007/s13762-021-03425-9.

GOEDE, K.K.; PRIMON, A.P.; OLIVEIRA, H.M.; PROENÇA, J.E.; ANGELO, N.M.M.; KONDO, Y.R.; CRUZ, S.P da. Inoculação de mudas de Pinus taeda em condições de campo. In: Simpósio de Ciências Agrárias e Ambientais, 2020, Monte Carmelo. Anais[...], Monte Carmelo, 2020. p.15.

HAMID, B.; ZAMAN, M.; FAROOQ, S.; FATIMA, S.; SAYYED, R.Z.; BABA, Z.H.; SHEIKH, T.A.; REDDY, M.S.; ENSHASY, H.E.; GAFUR, A.; SURIANI, N.L. Bacterial Plant Biostimulants: A Sustainable Way towards Improving Growth, Productivity, and Health of Crops. Sustainability, Basiléia, v. 13, p. 2-24, 2021. DOI: https://doi.org/10.3390/su13052856.

HASHEM, A.; TABASSUM, B.; ABD_ALLAH, E.F. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, Amsterdam, v. 26, n. 6, p. 1291-1297, 2019. DOI: https://doi.org/10.1016/j.sjbs.2019.05.004.

IBÁ. Industria Brasileira de Árvores. Relatório anual. São Paulo: IBÁ, 2020. Available in: https://iba.org/datafiles/publicacoes/relatorios/relatorio-iba-2020.pdf. Accessed on: 24 July 2021.

JANG, J.H.; KIM, S.H.; KHAINE, I.; KWAK, M.J.; LEE, H.K.; LEE, T.Y.; LEE, W.Y.; WOO, S.Y. Physiological changes and growth promotion induced in poplar seedlings by the plant growth-promoting rhizobacteria Bacillus subtilis JS. Photosinthetica, Basingstoke, v. 56, n. 4, p.1188-1203, 2018. DOI: https://doi.org/10.1007/s11099-018-0801-0.

JOHNSON, J.D.; CLINE, M.L. Seedling Quality of Southern Pines. In: DURYEA, M.L., DOUGHERTY, P.M. (Eds.). Forest Regeneration Manual. Forestry Sciences, Basingstoke, v. 36, 1991.DOI: https://doi.org/10.1007/978-94-011-3800-0_8.

KONDO, Y.R.; PRIMON, A.P.; FIOREZE, A.C.C.L. da; CRUZ, S.P da. Growth promotion of genetically improved Pinus taeda seedlings by inoculation with species of Bacillus. Cerne, Lavras, v. 26, n. 4, p. 456-463, 2020. DOI: https://doi.org/10.1590/01047760202026042757.

PROBANZA, A.; GARCÍA, J.A.L.; PALOMINO, M.R.; RAMOS, B.; MAÑERO, F.J.G. Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Applied Soil Ecology, Amsterdam, v. 20, p. 75-84, 2002. DOI: https://doi.org/10.1016/S0929-1393(02)00007-0.

REHMAN, F.; KALSOOM, M.; ADNAN, M.; TOOR, M.D.; ZULFIQAR, A. Plant Growth Promoting Rhizobacteria and their Mechanisms Involved in Agricultural Crop Production: A Review. SunText Review of Biotechnology, Bentonville, v. 1, n. 2, p. 1-6, 2020. DOI: https://doi.org/10.51737/2766-5097.2020.010.

SANTOS, R.F. dos; CRUZ, S.P da.; BOTELHO, G.R.; FLORES, A.V. Inoculation of Pinus taeda Seedlings with Plant Growth-promoting Rhizobacteria. Floresta e Ambiente, Seropédica, v. 25, n. 1, p. 1-7, 2018. DOI: https://doi.org/10.1590/2179-8087.005616.

SHAMEER, S.; PRASAD, T.N.V.K.V. Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regulation, Basingstoke, v. 84, p. 603-615, 2018. DOI: https://doi.org/10.1007/s10725-017-0365-1.

SINGH, I. Plant Growth Promoting Rhizobacteria (PGPR) and Their Various Mechanisms for Plant Growth Enhancement in Stressful Conditions: A Review. European Journal of Biological Research, Poznań, v. 8, n. 4, p. 191-213, 2018. DOI: http://dx.doi.org/10.5281/zenodo.14559955.

SORIA, S.; ALONSO, R.; BETTUCCI, L. Endophytic bacteria from Pinus taeda L. as biocontrol agents of Fusarium circinatum Nirenberg & O’Donnell. Chilean Journal of Agricultural Research, Chillan, v. 72, n. 2, p. 281-284, 2012. DOI: http://dx.doi.org/10.4067/S0718-58392012000200018.

SOUMARE, A.; DIÉDHIOU, A. G.; ARORA, N. K.; KHALIL, L.; AL-ANI, L. K. T.; NGOM, M.; FALL, S.; HAFIDI, M.; OUHDOUCH, Y.; KOUISNI, L.; SY, M. O. Potential role and utilization of plant growth promoting microbes in plant tissue culture. Frontiers in Microbiology, Lausanne, v. 12, p. 1-13, 2021. DOI: https://doi.org/10.3389/fmicb.2021.649878.

TRAZZI, P.A.; SANTOS, J.A. dos; DOBNER JÚNIOR, M.; HIGA, A.R.; ROTERS, D.F.; CALDEIRA, M.V.W. A qualidade morfológica de mudas de Pinus taeda afeta o crescimento em campo no longo prazo? Scientia Forestalis, Piracicaba, v. 48, n. 127, e3052, 2020. DOI: https://doi.org/10.18671/scifor.v48n127.04.

TUOTO, M.; HOEFLICH, V.A.A. indústria florestal brasileira baseada em madeira de pinus: limitações e desafios. In: SHIMIZU, J.Y. Pínus na silvicultura brasileira. Colombo: Embrapa Florestas, 2008. p. 17-47.

ULRICH, D.E.M.; SEVANTO, S.; PETERSON, S.; RYAN, M.; DUNBAR, J. Effects of soil microbes on functional traits of loblolly pine (Pinus taeda) seedling families from contrasting climates. Frontiers in Plant Science, Lausanne, v. 10, p.1-16, 2020. DOI: https://doi.org/10.3389/fpls.2019.01643.

VASCONCELLOS, R.L.F. de; CARDOSO, E.J.B.N. Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda. BioControl, Basingstoke, v. 54, p. 807-816, 2009. DOI: https://doi.org/10.1007/s10526-009-9226-9.

VONDERWELL, J.D.; ENEBAK, S.A.; SAMUELSON, L.J. Influence of two plant growth-promoting rhizobacteria on Loblolly pine root respiration and IAA activity. Forest Science, Oxford, v.47, n.2, p.197-202, 2001. DOI: https://doi.org/10.1093/forestscience/47.2.197.

Published

2021-12-28

How to Cite

Rocha Kondo, Y., Kaschuk, G. ., & Purin da Cruz, S. (2021). Inoculation of plant growth promoting bacteria for Pinus taeda L. seedlings. Agropecuária Catarinense Journal, 34(3), 93–98. Retrieved from https://publicacoes.epagri.sc.gov.br/rac/article/view/1251

Issue

Section

Bibliografic review