MonitoraSC
a new forest cover and land use map of Santa Catarina state
DOI:
https://doi.org/10.52945/rac.v34i2.1086Keywords:
thematic mapping, forest cover, Random Forest classificationAbstract
A forest cover and land use map provides fundamental information for territorial management, aiming at socioeconomic development, environmental planning and control and protection of natural resources. In this article, a new forest cover map is introduced, using synergies between field data from Santa Catarina Floristic and Forest Inventory (IFFSC) and remote sensing data. Landsat-8 OLI images (2017) were classified using the Random Forest algorithm. Twelve thematic classes were mapped; the minimum mapping area is 0.5 hectare. The map has an overall accuracy of 95%, with a confidence interval of 1.0% (alpha = 0.05). The average accuracy per class varies between 90% (agriculture) and 97% (restinga). Concerning the forest class, the map showed a 96.2% coincidence with the IFFSC sample points. Native forest cover (forests from the intermediate regeneration stage on) is present in 38.05% of the territory, reforestation in 10.46%, agriculture in 16.73% (including 1.77% of irrigated rice crops), pastures and natural savanna in 29.24%. The area of the original extension of the restinga was determined to be 1,773 km², of which 814.5 km² (or 45.9%) are covered by natural remnants, beaches and dunes. This mapping forms the basis for decision-making by public agents involved in territorial planning and management activities and will serve as a baseline for the continuous monitoring of the extent of the state's forest cover.
Metrics
References
BREIMAN, L. Random Forests. Machine Learning, v.45, n.1, p.5-32, 2001. DOI: https://doi.org/10.1023/A:1010933404324.
CHEN, W.; LIU, L.; ZHANG, C.; WANG, J.; WANG, J.; PAN, Y. Monitoring the seasonal bare soil areas in Beijing using multitemporal TM images. IGARSS 2004. Geoscience and Remote Sensing Symposium Proceedings, IEEE, vol.5, p.3379-3382, 2004. DOI: https://doi.org/10.1109/IGARSS.2004.1370429.
BRASIL. CONAMA - Conselho Nacional de Meio Ambiente. Resolução n° 4, de 4 de maio de 1994. Convalidada pela Resolução CONAMA nº 388/07 para fins do disposto na Lei 11.428, de 22 de dezembro de 2006.
VIERO, A.C.; SILVA, D.R.A. da. Geodiversidade do estado de Santa Catarina: Programa Geologia do Brasil. Levantamento da Geodiversidade. Porto Alegre, RS: CPRM - Serviço Geológico do Brasil. 2016. 155p.
CRUZ, C.B.M.; VICENS, R.S. Levantamento da Cobertura Vegetal Nativa do Bioma Mata Atlântica. Relatório Final. Rio de Janeiro, RJ: IESB/IGEO/UFRJ/UFF, 2007. 84 p.
EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária. Solos do Estado de Santa Catarina. Rio de Janeiro, RJ, 2004. (Embrapa Solos, CD-ROM. Boletim de Pesquisa e Desenvolvimento, 46). Apoio EPAGRI – Empresa de Pesquisa e Extensão Rural de Santa Catarina. Escala: 1:250.000.
FARR, T.G.; ROSEN, P.A.; CARO, E.; CRIPPEN, R.; DUREN, R.; HENSLEY, S.; KOBRICK, M.; PALLER, M.; RODRIGUEZ, E.; ROTH, L.; SEAL, D.; SHAFFER, S.; SHIMADA, J.; UMLAND, J.; WERNER, M.; OSKIN, M.; BURBANK, D.; ALSDORF, D. The Shuttle Radar Topography Mission, Reviews of Geophysics, v.45, p.1-33, RG2004/2007, 2007. DOI: https://doi.org/10.1029/2005RG000183.
FUNDAÇÃO S.O.S MATA ATLÂNTICA. Atlas dos remanescentes florestais da Mata Atlântica, período 2015–2016. Relatório Técnico. São Paulo, SP, 2017. 60p. (Fundação S.O.S. Mata Atlântica / Instituto Nacional de Pesquisas Espaciais).
GEOAMBIENTE. Mapeamento Temático Geral do Estado de Santa Catarina: Projeto de Proteção da Mata Atlântica em Santa Catarina (PPMA/SC). Relatório Técnico. São José dos Campos, SP, 2008. 90p. (Geoambiente Sensoriamento Remoto Ltda.).
HUETE, A.R.; DIDAN, K.; MIURA, T.; RODRIGUEZ, E.P.; X. GAO, X.; FERREIRA, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, v.83, n.1-2, p.195–213, 2002. DOI: https://doi.org/10.1016/S0034-4257(02)00096-2
IBAMA. Atlas dos Manguezais do Brasil. Brasília, DF, 2018. 175p. (Instituto Chico Mendes de Conservação da Biodiversidade).
IBGE. Mapa Geomorfologia - Folhas SG 22-Z-B, SG 22-Z-D, SH 22-X-B. Escala 1:250.000. Rio de Janeiro, RJ, 2004a.
IBGE. Mapa Pedologia - Folhas SG 22-Z-B, SG 22-Z-D, SH 22-X-B. Escala 1:250.000. Rio de Janeiro, TJ, 2004b.
JIANG, Z.; HUETE, A.R.; DIDAN, K.; MIURA, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, v.112, n.10, p.3833-3845, 2008. DOI: https://doi.org/10.1016/j.rse.2008.06.006.
KLEIN, R.M. Mapa fitogeográfico do estado de Santa Catarina. Itajaí, SC, 1978. 24p. (SUDESUL, FATMA, HBR, Flora Ilustrada Catarinense, 5).
KÖHL, M.; MAGNUSSEN, S.S.; MARCHETTI, M. Sampling Methods, Remote Sensing and GIS Multiresource Forest Inventory. Springer, Heidelberg, Alemanha, 2006. 372p.
MCFEETERS, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, v.17, n.7, p.1425–1432, 1996.
PROJETO MAPBIOMAS. Coleção 5 da Série Anual de Mapas de Cobertura e Uso do Solo do Brasil. São Paulo, SP, 2020. Disponível em: https://mapbiomas.org/colecoes-mapbiomas-BR. Acesso em: 05 nov. 2020.
OLOFSSON, P.; FOODY, G.M.; HEROLD, M.; STEHMAN, S.V.; WOODCOCK, C.E.; WULDER, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, v.148, n.1, p.42–57, 2014. DOI: https://doi.org/10.1016/j.rse.2014.02.015
RASUL, A.; BALZTER, H.; IBRAHIM, G.R.F.; HAMEED, H.M.; WHEELER, J.; ADAMU, B.; IBRAHIM, S.; NAJMADDIN, P.M. Applying built-up and bare-soil indices from Landsat 8 to cities in dry climates. Land, v.7, n.3, p.81, 2018. DOI: https://doi.org/10.3390/land7030081
ROUSE, J.W.; HAAS, R.H.; SCHEEL, J.A.; DEERING, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In: Earth Resource Technology Satellite (ERTS) Symposium, 3rd, 1974. Proceedings […], vol.1, p.48-62, 1974.
SANTA CATARINA. Levantamento Aerofotogramétrico. Relatório de Produção Final. Florianópolis, SC, 2012. 218p. (Secretaria de Estado do Desenvolvimento Econômico Sustentável).
SOENEN, S.A.; PEDDLE, D.R.; COBURN, C.A. SCS+C: A modified Sun-Canopy-Sensor topographic correction in forested terrain. IEEE Transactions on Geoscience and Remote Sensing, v.43. n.9, p.2148-2159, 2005. DOI: https://doi.org/10.1109/TGRS.2005.852480
TOMPPO, E.; GSCHWANTNER, T.; LAWRENCE, M.; MCROBERTS, R.E. National Forest Inventories: Pathways for Common Reporting. Springer, Heidelberg, Alemanha, 2010. 609p. DOI: https://doi.org/10.1007/978-90-481-3233-1
VIBRANS, A. C.; MCROBERTS, R. E.; MOSER, P.; NICOLETTI, A. L. Using satellite image-based maps and ground inventory data to estimate the area of the remaining Atlantic forest in the Brazilian state of Santa Catarina. Remote Sensing of Environment, v.130, n.1, p.87-95, 2013. DOI: https://doi.org/10.1016/j.rse.2012.10.023
VIBRANS, A.C; GASPER, A.L.; MOSER, P.; OLIVEIRA, L.Z.; LINGNER, D.V.; SEVEGNANI, L. Insights from a large-scale inventory in the southern Brazilian Atlantic Forest. Scientia Agricola, v.77, n.1, p.1-12; e20180036, 2020. DOI: https://doi.org/10.1590/1678-992x-2018-0036
VIDAL, C.; ALBERDI, I.; HERNÁNDEZ, L.; REDMOND, J.J. National Forest Inventories. Springer, Heidelberg, Alemanha, 2010. 845p. DOI: https://doi.org/10.1007/978-3-319-44015-6
ZHA, Y.; GAO, J.; NI, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, v.24, n.3, p.583-594, 2003. DOI: https://doi.org/10.1080/01431160304987
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Alexander Christian Vibrans, Adilson L. Nicoletti, Veraldo Liesenberg, Julio C. Refosco, Luciana P. de A. Kohler, Artur R. Bizon, Débora V. Lingner, Fernanda Dal Bosco, Marcus M. Boeno, Murilo S. da Silva, Thales B. Pessatti
This work is licensed under a Creative Commons Attribution 4.0 International License.