Use of near infrared spectroscopy and multivariate calibration to determine the nutritional composition of ryegrass
DOI:
https://doi.org/10.52945/rac.v37i1.1781Keywords:
Calibration models, Bromatology, Spectroscopy.Abstract
In pasture-based production systems, knowledge of the nutritional potential of forages is of great importance for decision-making regarding food supplementation. However, analyses to assess nutritional composition are expensive and time-consuming. Near-infrared spectroscopy (NIRS) is a rapid and economical method used to quantify the levels of organic compounds in feeds. In the present work, multivariate calibration models were developed to predict crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and in vitro digestibility of organic matter (DIVMO) of ryegrass using the NIRS technique, to be used in laboratory routine. The number of samples used varied from 294 to 390, depending on the component analyzed. The models were selected using the root mean square error of prediction (RMSEP), bias, deviation performance ratio (RPD), the error interval ratio (RER), and coefficients of determination (R2) obtained in external validation. For PB, FDN, FDA and DIVMO, the selected models presented the following values, respectively: R2 = 0.98; 0.94; 0.96; 0.91; RMSEP = 0.96; 1.35; 1.03; 1.58; bias = 0.21; 0.51; 0.70; 0.06; RPD = 6.33; 5.02; 4.08; 3.80; and RER = 26.33; 14.37; 14.61; 11.46. According to the goodness-of-fit measures obtained, the models developed for CP, NDF, and FDA can be used in the laboratory routine to analyze the nutritional values of ryegrass. The model developed for DIVMO can be used to screen ryegrass in evaluation, selection, and improvement studies.
Metrics
References
ANDUEZA, D.; PICARD, F.; JESTIN, M.; ANDRIEU, J.; BAUMONT, R.; NIRS prediction of the feed value of temperate forages: Efficacy of four calibration strategies. Animal, v.5, n.7, p.1002-1013, 2011. DOI: https://doi.org/10.1017/S1751731110002697.
ANKOM. Analytical Methods. 2017. Disponível em: https://www.ankom.com/analytical-methods-support/fiber-analyzer-a200. Acesso em: 24 jan. 2022.
BEZADA, S.Q.; ARBAIZA, T.F.; CARCELÉN, F.C.; SAN MARTÍN, F.H.; LÓPEZ, C.L.; ROJAS, J.E.; RIVADENEIRA, V.; ESPEZÚA, O.F.; GUEVARA, J.V.; VÉLEZ, V.M. Predicción de la composición química y fibra detergente neutro de Rye Grass Italiano (Lolium multiflorum Lam) mediante espectroscopía de reflectancia en infrarrojo cercano (NIRS). Revista de Investigaciones Veterinarias del Perú, v. 28, n. 3, p. 538-548, 2017. Disponível em: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1609-91172017000300007. Acesso em: 31 jan. 2022.
BÜCHI Labortechnik AG. NIRCal 5.5 - Operation Manual. Flawil, Suíça, 2013. 283p.
BURNS, G.A.; GILLILAND, T.J.; MCGILLOWAY, D.A.; O’DONOVAN, M.; LEWIS, E.; BLOUNT, N.; O’KIELY, P. Using NIRS to predict composition characteristics of Lolium perenne L. cultivars. Advances in Animal Biosciences, 1, p.321–321, 2010. Disponível em: https://www.cambridge.org/core/journals/advances-in-animal-biosciences/article/using-nirs-to-predict-composition-characteristics-of-lolium-perenne-l-cultivars/6FDD12E039AE42294466E7A4122FBF44
DARDENNE, P.; SINNAEVE, G.; BAETEN, V. Multivariate Calibration and Chemometrics for near Infrared Spectroscopy: Which Method? Journal of Near Infrared Spectroscopy, v.8, n.4, p.229-237. 2000. DOI: http://dx.doi.org/10.1255/jnirs.283
DIAS, M.C.; NUNES, H.; BORBA, A. Near-Infrared Spectroscopy Integration in the Regular Monitorization of Pasture Nutritional Properties and Gas Production. Agriculture, v.13, n.7, p.1398, 2023. DOI: http://dx.doi.org/10.3390/agriculture13071398
ESBENSEN, K.H.; GELADI, P.; LARSEN, A. The RPD myth... NIR News, v.25, n.5, p.24-28, 2014. Disponível em:
https://www.researchgate.net/publication/270640674_The_RPD_myth#fullTextFileContent
EPAGRI. Avaliação de cultivares para o estado de Santa Catarina 2020 – 2021 - Forrageiras. Epagri: Florianópolis, SC, 2020. 38p. (Boletim Técnico, 194).
FÁVARO, V.R.; CÓRDOVA, U.A.; PINTO, M.G.L.; RECH, Â.F.; WERNER, S.S.; BALDISSERA, T.C. Produção animal e variáveis climáticas em pastagem de azevém-anual tetraploide. Revista Científica Rural, Bagé-RS, v.22, n.2, 2020.
FÁVARO, V.R.; PINTO, M.G. L.; CUCCO, D.C.; WERNER, S.S.; ROSSETTO, L. Desempenho, características da carcaça e da carne de bovinos meio/sangue da raça Flamenga, terminados em pastagem de azevém anual e suplementados com casca de soja. Agropecuária Catarinense, Florianópolis, v.34, n.1, p.37-41, 2021.
FERNANDES, A.M.F. Uso da espectroscopia de reflectância do infravermelho próximo (NIRS) para previsão da composição bromatológica de vagens de algaroba e palma forrageira. 2015. 105f. Dissertação (Mestrado em Zootecnia) - Universidade Estadual Vale do Acaraú, Sobral, CE, 2015.
GALON, L.; TIRONI, S.P.; ROCHA, P.R.R.; CONCENÇO, G.; SILVA, A.F.; VARGAS, L.; SILVA, A.A.; FERREIRA, E.A.; MINELLA, E.; SOARES, E.R.; FERREIRA, F.A. Competitive ability of barley cultivars against ryegrass. Planta Daninha, Viçosa-MG, v.29, n.4, p.771-781, 2011.
GINDRI, M. Uso do NIRS como ferramenta de diagnóstico nutricional de ovinos mantidos em pastagem natural. 2016. 77.f. Dissertação (Mestrado em Zootecnia), Universidade Federal de Santa Maria, RS, 2016. Disponível em:
https://repositorio.ufsm.br/bitstream/handle/1/10923/GINDRI%2c%20MARCELO.pdf?sequence=1&isAllowed=y. Acesso em: 11 oct. 2023.
GISLUM, R.; MICKLANDER, E.; NIELSEN, J.P. Quantification of nitrogen concentration in perennial ryegrass and red fescue using near-infrared reflectance spectroscopy (NIRS) and chemometrics. Field Crops Research, v.88, p. 269- 277, 2004. Disponível em: https://www.academia.edu/32215921/Quantification_of_nitrogen_concentration_in_perennial_ryegrass_and_red_fescue_using_near_infrared_reflectance_spectroscopy_NIRS_and_chemometrics.
MAZABEL, J.; WORTHINGTON, M.; CASTIBLANCO, V.; PETERS, M.; ARANGO, J. Using near infrared reflectance spectroscopy for estimating nutritional quality of Brachiaria humidicola in breeding selections. Agrosystems Geosciences and Environment, v.3, e20070, 9p., 2020. DOI: https://doi.org/10.1002/agg2.2007
MCCLURE, W.F. 204 years of near infrared technology: 1800-2003, J. Near Infrared Spectroscopy, v.11, n.6, p.487-518, 2003. DOI: https://journals.sagepub.com/doi/abs/10.1255/jnirs.399.
METROHM. NIR Spectroscopy. A guide to near-infrared spectroscopic analysis of industrial manufacturing processes. Herisau, Suíça: Metrohm. 2013. Disponível em: https://www.metrohm.com/pt_br/products/8/1085/81085026.html. Acesso em: ???
MONTEIRO, A.R.D; FEITAL, T.S.; PINTO, J.C. Statistical Aspects of Near-Infrared Spectroscopy for the Characterization of Errors and Model Building. Applied Spectroscopy, v.71, n.7, p.1665-1676, 2017. Disponível em: https://www.researchgate.net/publication/316532367_Statistical_Aspects_of_Near-Infrared_Spectroscopy_for_the_Characterization_of_Errors_and_Model_Building. Acesso em: 09 fev. 2022.
MURPHY, D.; BRIEN, B.; DONOVAN, M.; CONDON, T.; MURPHY, M. A near infrared spectroscopy calibration for the prediction of fresh grass quality on Irish pastures. Information Processing in Agriculture, v.9. p.243–253, 2022. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214317321000366. Acesso em: 11 oct. 2023.
NETO, M.M.G.; SIMEONE, M.L.F.; GUIMARÃES, C.C. Predição do teor de proteína bruta em biomassa de capins braquiária por meio de espectroscopia NIR. Comunicado Técnico, n. 205. Embrapa Milho e Sorgo, Sete Lagoas, MG, 2012. 5p.
NOEL, S.J.; JØRGENSEN, H.J.H.; KNUDSEN, K.E.B. The use of near-infrared spectroscopy (NIRS) to determine the energy value of individual feedstuffs and mixed diets for pigs. Animal Feed Science and Technology, v.283, p.115-156, 2022. Disponível em: https://reader.elsevier.com/reader/sd/pii/S0377840121003424?token=42F3EC30C93700967DCD80EA9A2C624B0BF3DC9AE34B8F19E2D414737BDA4F51FA9296E10A04CD5C67EFD8716CF6E6A2&originRegion=us-east-1&originCreation=20220214195606. Acesso em: 11 fev. 2022.
NORRIS, K.H.; BARNES, R.F.; MOORE, J.E.; SHENK, J.S. Predicting forage quality by infrared reflectance spectroscopy. Journal of animal science, v.43, n.4, p.889-897, 1976. Disponível em: https://academic.oup.com/jas/article-abstract/43/4/889/4697632?login=false. Acesso em: ???
PASQUINI, C. Near infrared spectroscopy: fundamentals, practical aspects and analytical applications. J. Braz. Chem. Soc., v.14, n.2, p.189-2019, 2003.
PASQUINI, C. Near infrared spectroscopy: A mature analytical technique with new perspectives – A review. Analytica Chimica Acta, v.1026, n.5, 2018, p.8-36, 2018.
PAULA, M., A.; VIEIRA, O.V.; MENOSSI, S.; CARVALHO, J.E.; ABUCÁTER, C.R.V. Aplicações da Espectroscopia no Infravermelho Próximo na Cadeia Produtiva de Grãos. In: TIBOLA, C.S.; MEDEIROS, E.P. de; SIMEONE, M.L.F.; OLIVEIRA, M.A. (Ed). Espectroscopia no Infravermelho próximo para avaliar indicadores de qualidade tecnológica e contaminantes em grãos. Brasília, DF: Embrapa, 2018. 200p. Disponível em: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1106595/1/ID445392018LVespectroscopia.pdf. Acesso em: 20 jul. 2020.
PRIETO, N.; PAWLUCZYK, O.; DUGAN, M.E.R.; AALHUS, J.L. A review of the principles and applications of near-infrared spectroscopy to characterize meat, fat, and meat products. Applied Spectroscopy, v.71, n.7, p.1403–1426, 2017. DOI: https://doi.org/10.1177/0003702817709299
RAMBO, M.K.D. Caracterização de resíduos lignocelulósico por espectroscopia NIR aliada a quimiometria para obtenção de insumos químicos. 2013. 182f. Dissertação (Doutorado em Ciências). Universidade Estadual de Campinas, Instituto de Química, Campinas, 2013.
RECH, A.F.; WERNER, S.S. Utilização da tecnologia NIRS para predição dos valores nutricionais de forrageiras. Agropecuária Catarinense, Florianópolis, v.33, n.1, p.11-14. 2020.
ROCHA, D.J.A.; CÓRDOVA, U.A.; FLARESSO, J.A.; NETO, J.S.; BALDISSERA, T.C.; COSTA, M.D.C. Avaliação de genótipos de azevém-anual para a região serrana de Santa Catarina. In: Simpósio de integração da pós-graduação: ciência, tecnologia e inovação, 1, 2018, Lages. Anais[...]. Lages: CAV-UDESC, 2018.
ROCHA, D.J.A.; COSTA, M.D.; CÓRDOVA, U.A.; FLARESSO, J.A.; STRADIOTO NETO, J.; JOCHIMS, F.; VOGT, G.A.; ZARDO, V.F.; PINTO, M.G.L. Cultivar de azevém-anual SCS317 Centenário. Florianópolis: Epagri, 2019. 6p.
SILVA, D.J.; QUEIROZ, A.C. Análise de Alimentos: métodos químicos e biológicos. 3ª. ed. Viçosa, MG: UFV, 2009. 235p.
SIMEONE, M.L.F.; PIMENTEL, M.A.G.; GONTIJO NETO, M.M.; PAES, M.C.D.; SILVA, D.D. Uso da espectroscopia no infravermelho próximo e calibração multivariada para avaliar a composição química do milho. In: TIBOLA, C.S.; MEDEIROS, E.P. de; SIMEONE, M.L.F.; OLIVEIRA, M.A. (Ed). Espectroscopia no Infravermelho próximo para avaliar indicadores de qualidade tecnológica e contaminantes em grãos. Brasília, DF: Embrapa, 2018. 200 p. Disponível em: https://www.alice.cnptia.embrapa.br/bitstream/doc/1106173/1/Usoespectroscopia.pdf. Acesso em: 20 jul. 2020.
SIMEONE, M.L.F.; GONTIJO NETO, M.M.; GUIMARAES, C.C.; MEDEIROS, E.; BARROCAS, G.E. G.; PASQUINI, C. Use of NIR and PLS to predict chemical composition of Brachiaria. In: INTERNATIONAL CONFERENCE ON NEAR INFRARED SPECTROSCOPY, 17, 2015, Foz do Iguassu. Abstracts[…]. Foz do Iguassu. 3p. 2015. Disponível em: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/131926/1/use-nir.pdf.
SOHN, S.I.; PANDIAN, S.; OH, Y-J; ZAUKUU, J.L.Z.; KANG, H-J.; RYU, T-H; CHO, W-S.; CHO, Y-S.; SHIN, E-K.; CHO, B-K. An overview of near infrared spectroscopy and its applications in the detection of genetically modified organisms. International Journal of Molecular Sciences, v.22, n.18, 9940, 2021. Disponível em: https://www.mdpi.com/1422-0067/22/18/9940. Acesso em: 31 jan. 2022.
SOUZA, G.B.; NOGUEIRA, A.R.R.; OLIVARES, I.R.B. Controle de Qualidade para Espectroscopia no Infravermelho Próximo. In: TIBOLA, C.S.; MEDEIROS, E.P.; SIMEONE, M.L.F.; OLIVEIRA, M.A. (Ed). Espectroscopia no Infravermelho próximo para avaliar indicadores de qualidade tecnológica e contaminantes em grãos. Brasília, DF: Embrapa, 2018. 200p. Disponível em:
https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1106595/1/ID445392018LVespectroscopia.pdf. Acesso em: 20 jul. 2020.
TIRONI, S.P.; GALON, L.; SILVA, A.F.; FIALHO, C.M. T.; ROCHA, P.R.R.; FARIA, A.T.; ASPIAZÚ, I.; FORTE, C.T.; SILVA, A.A.; RADÜNZ, A.L. Time of emergency of ryegrass and wild radish on the competitive ability of barley crop. Ciência Rural, v.44, n.9, p.1527-1533, 2014.
TILLEY, J.M.A.; TERRY, R.A.A. Two stage technique for the “in vitro” digestion of forage crops. Journal of British Grassland Society, v.18, n.2, p.104-111, 1963.
VAN SOEST, P.J.; ROBERTSON, J.B.; LEWIS, B.A. Symposium: Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., v.74, p.3583-97, 1991.
VRANIC, M.; BOSNJAK, K., RUKAVINA, I.; GLAVANOVIC, S.; PUKEC, N.P.; BABIC, A.; VRANIC, I. Prediction of forage chemical composition by NIR spectroscopy. Journal of Central European Agriculture, v.21, n.3, p.554–568. 2020. Disponível em: https://hrcak.srce.hr/file/355021. Acesso em: 19 oct. 2023.
VALDERRAMA, P.; BRAGA, J.W.B.; POPPI, R.J. Estado da arte de figuras de mérito em calibração multivariada. Química Nova, v.32, n.5, p.1278-1287, 2009.
WILLIAMS, P. The RPD Statistic: A Tutorial Note. NIR News, v.25, p.22 - 26. 2014. Disponível em: https://www.semanticscholar.org/paper/The-RPD-Statistic%3A-A-Tutorial-Note-Williams/da3c8ef4809dae96e2476c95cc722d867e9a5870 Acesso em: 19/01/2022.
WILLIAMS, P.C., SOBERING, D.C. Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. Journal of Near Infrared Spectroscopy, v.1, n.1, p.25- 32, 1993.
WILLIAMS, P.; DARDENNE, P.; FLINN, P. Tutorial: Items to be included in a report on a near infrared spectroscopy project. Journal of Near Infrared Spectroscopy, v.25, n.2, p.85–90, 2017.
YANG, Z., NIE, G.; PAN, P.; ZHANG, Y.; HUANG, L.; MA, X.; ZHANG, X. Development and validation of near-infrared spectroscopy for the prediction of forage quality parameters in Lolium multiflorum. PeerJ, v.5, e3867, 2017.
YAKUBU, H.G.; WORKU, A.; TÓTHI, R.; TÓTH, T.; OROSZ, S.; FÉBEL, H.; KACSALA, L.; HÚTH, B.; HOFFMANN, R.; BAZAR, G. Near-infrared spectroscopy for rapid evaluation of winter cereals and Italian ryegrass forage mixtures. Animal science Journal, v.94, n.1, 2023. DOI: https://onlinelibrary.wiley.com/doi/epdf/10.1111/asj.13823
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ângela Fonseca Rech, Simone Silmara Werner
This work is licensed under a Creative Commons Attribution 4.0 International License.